CONVOLUTION NEURAL NETWORKS - POTHOLE DETECTION

12/7/2018 - ROWAN

Thai Nghiem

Signal Processing & Pattern Recognition Laboratory Electrical & Computer Engineering Rowan University, Glassboro, NJ

- Problem Definition
- Data Analysis
- Data Preprocessing & Data Augmentation
- First Model
- Second Model
- Misclassification and Why
- Possible ventures

OIITIINE

Problem Definition

PROBLEM STATEMENT

Requirement– Differentiate between a road that is in a good condition versus a road that has pothole(s) using a 1280x720 RGB image.

Constraints

- Relatively small dataset (~6000 images)
- Lack of Memory in GPU
- Runtime

Standards

- 70% and 30% ratio
- K-fold validation & Early stopping
- Keras wrapper for TensorFlow
- Images taken from same camera and orientation

Data Analysis

- **DATA ANALYSIS**
- Dataset will be collected from NJDOT Clinic lead by Dr. Bouaynaya and Dr. Farzan Kazemi.
- Data description

```
dataset_information.txt - Notepad
File Edit Format View Help
dataset1_01: Only good road, no other attributes
dataset1_02: All badroad (cracks and potholes)
dataset1_03: Only cracks (good road and bad road)
dataset1_04: Only potholes (good road and bad road)
```

Good Road (dataset1_01) : 4000 images (128x720 RGB)
 Pothole Road (dataset1_04) : 2000 images (128x720 RGB)

DATA AUGMENTATION

- Equals amount of good road and pothole road images
 - \rightarrow 5,000 images each class for the first model
 - \rightarrow 10,000 images each class for the second model
- Random rotation and blur images

First Model

- The naïve one

Rowan ()

Non-trainable params: 0

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	31, 31, 16)	1040
activation_1 (Activation)	(None,	31, 31, 16)	0
conv2d_2 (Conv2D)	(None,	16, 16, 32)	12832
activation_2 (Activation)	(None,	16, 16, 32)	0
conv2d_3 (Conv2D)	(None,	8, 8, 64)	51264
	((None,	64)	0
dropout_1 (Dropout)	(None,	64)	0
activation_3 (Activation)	(None,	64)	0
dense_1 (Dense)	(None,	1024)	66560
dropout_2 (Dropout)	(None,	1024)	0
activation_4 (Activation)	(None,	1024)	0
dense_2 (Dense)	(None,	512)	524800
dropout_3 (Dropout)	(None,	512)	0
activation_5 (Activation)	(None,	512)	0
dense_3 (Dense)	(None,	2)	1026
activation 6 (Activation)	(None,	2)	0

First Model

- Input layer: 128x128 grayscale pictures

3 Convolutions layers, each with a subsample
2 Hidden FC layers
Dropout and 'relu'

FIRST MODEL

- Took 16 minutes to train
- Activation layers:

3s 963us/step

Result:

Second Model

- The new and improved one

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 31, 31, 16)	3088
activation_1 (Activation)	(None, 31, 31, 16)	0
conv2d_2 (Conv2D)	(None, 31, 31, 32)	12832
activation_2 (Activation)	(None, 31, 31, 32)	0
global_average_pooling2d_1 ((None, 32)	0
dense_1 (Dense)	(None, 512)	16896
dropout_1 (Dropout)	(None, 512)	0
activation_3 (Activation)	(None, 512)	0
dense_2 (Dense)	(None, 2)	1026
activation_4 (Activation)	(None, 2)	0
Total params: 33,842 Trainable params: 33,842 Non-trainable params: 0		

Second Model

Ξ.

Input layer: 10,000 128x128 RGB pictures

- 2 Convolutions layers, each with a subsample
 1 Hidden FC layers
 Dropout and 'relu'
- Early stopping

SECOND MODEL

Misclassification & Why

Good Road' misclassified as 'Bad Road'

SOME GENERAL THOUGHTS

- Build Multi-class Classifier in a single image
 - Have images of 1 single class. For example:

Good Road
 Train algorithms like Mask R-CNN

- More data
- Correctly Label Classes

Cracks

Pothole

Thanks for listening!

Bonus Slides

Images Sizes

• 128 x 128

• 128 x 72

120

OTHER MODELS 1

• 128x5000

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	31, 31, 16)	1040
activation_1 (Activation)	(None,	31, 31, 16)	0
conv2d_2 (Conv2D)	(None,	16, 16, 32)	12832
activation_2 (Activation)	(None,	16, 16, 32)	0
conv2d_3 (Conv2D)	(None,	8, 8, 64)	51264
	(None,	64)	0
dropout_1 (Dropout)	(None,	64)	0
activation_3 (Activation)	(None,	64)	0
dense_1 (Dense)	(None,	512)	33280
dropout_2 (Dropout)	(None,	512)	0
activation_4 (Activation)	(None,	512)	0
dense_2 (Dense)	(None,	256)	131328
dropout_3 (Dropout)	(None,	256)	0
activation_5 (Activation)	(None,	256)	0
dense_3 (Dense)	(None,	2)	514
activation_6 (Activation)	(None,	2)	0
Total params: 230,258 Trainable params: 230,258 Non-trainable params: 0			

3000/3000 [=====] -	3s	880us/step	
1000.0.2020650672000601			
1035: 0.30390300/2009001			
PCC: 0 8446666666666666			
acc. 0.01100000000000			

• 128x72x3x10000

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	17, 31, 16)	3088
activation_1 (Activation)	(None,	17, 31, 16)	0
conv2d_2 (Conv2D)	(None,	9, 16, 32)	12832
activation_2 (Activation)	(None,	9, 16, 32)	0
global_average_pooling2d_1 ((None,	32)	0
dense_1 (Dense)	(None,	1024)	33792
dropout_1 (Dropout)	(None,	1024)	0
activation_3 (Activation)	(None,	1024)	0
dense_2 (Dense)	(None,	256)	262400
dropout_2 (Dropout)	(None,	256)	0
activation_4 (Activation)	(None,	256)	0
dense_3 (Dense)	(None,	2)	514
activation_5 (Activation)	(None,	2)	0
Total params: 312,626 Trainable params: 312,626 Non-trainable params: 0			

OTHER MODELS 2

6000/6000	[==========	 - [======]

loss: 0.271551072537899

acc: 0.898

OTHER MODELS 3

• 3 classes (Good road, pothole road, and cracks)

• 128x128x3x10000

Non-trainable params: 0

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	31, 31, 16)	3088
activation_1 (Activation)	(None,	31, 31, 16)	0
conv2d_2 (Conv2D)	(None,	31, 31, 32)	12832
activation_2 (Activation)	(None,	31, 31, 32)	0
global_average_pooling2d_1 ((None,	32)	0
dense_1 (Dense)	(None,	512)	16896
dropout_1 (Dropout)	(None,	512)	0
activation_3 (Activation)	(None,	512)	0
dense_2 (Dense)	(None,	2)	1026
activation_4 (Activation)	(None,	2)	0
Total params: 33,842 Trainable params: 33,842			

This image is classified as 'Cracks'

REASONS BEHIND MY LAYERS

- Only 1 subsample:
 - Reduce total number of parameters → Reduce computational complexity →
 Faster
 - While retain information
- 2 Convolution Layer:
 - Avoid overfitting
 - Get more spatial information
- Global Average Pooling 2D

- https://alexisbcook.github.io/2017/globalaverage-pooling-layers-for-object-localization/
- Minimize overfitting by reducing the total number of parameters in the model
- Reduce the spatial dimensions of a three-dimensional tensor \rightarrow Flatten

