

Predicting Most Relevant Features- Finding top relevant features helps

doctors in understanding what types of clock drawing behaviors are highly

Reduce Feature Dependency- Many of the clock features are highly correlated with one another which can have a negative effect on training.

EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE USING MACHINE LEARNING ON COGNITIVE TESTS TIMOTHY DUONG, NICHOLAS KLEIN, KYLE NADDEO, THAI NGHIEM, AND LONNIE SOUDER Advised by Dr. Robi Polikar

SIGNAL PROCESSING & PATTERN RECOGNITION LABORATORY, DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING, ROWAN UNIVERSITY, GLASSBORO, NJ 08028 duongt3@students.rowan.edu, kleinn0@students.rowan.edu, naddeok5@students.rowan.edu, nghiemt2@students.rowan.edu, souderl9@studens.rowan.edu, polikar@rowan.edu

FEATURE SELECTION ALGORITHMS

ne US, and the
y, yet early
improving the

Figure 1: Raw clock data from the copy dataset.

- **Genetic Algorithm**
 - A constrained optimization algorithm inspire selection
 - An <u>individual</u> is represented by its genome; a bit field. The genome represents which features are active in classification.
 - The fitness of an individual is the generalization results of a classifier. A simple logistic regression classifier was used for this study.
 - The population is a set of individuals from which only the best survive to the next <u>generation</u>. The best individuals have offspring through <u>crossover</u> and exploration is accomplished through mutations.
- Hierarchical Feature Selection
 - Using multiple networks in a series to select features, each refining the results of the previous network.
 - The features resulting from <u>Information Theory</u> selection are refined using a Wrapper approach.
 - Information Theory Feature Selection
 - Mutual Information : $J_{mifs} = I(X_n; Y) \beta \sum_{k=1}^{n-1} I(X_n; X_k)$ • Features chosen based on mutual information between the label and each feature.
 - Minimum Redundancy Maximum Relevancy:
 - $J_{mrmr} = I(X_n; Y) \frac{1}{n-1} \sum_{k=1}^{n-1} I(X_n; X_k)$ • Checks for redundant features that can be eliminated.
 - Joint Mutual Information: $J_{jmi} = I(X_n; Y) - \frac{1}{n-1} \sum_{k=1}^{n-1} [I(X_n; X_k) - I(X_n; X_k | Y)]$
 - Checks feature pairs [Xn & Xk] for single label redundancy.
 - Conditional Mutual Information Maximization: $J_{cmim} = I(X_n; Y) - max_k[I(X_n; X_k) - I(X_n; X_k|Y)]$ • Improves feature scores by pairing low scoring features [Xn] with a second feature[Xk] that maximizes the score.
 - Wrapper Based Feature Selection
- Uses <u>Sequential Feature Selection</u>, recursive greedy search algorithms to select or reject features until optimal set is found. Stacked Generalization
 - Train a model (Meta Classifier) to learn how to best combine the output of two or more models (T1 Classifiers) trained on the data set.
 - using RFE, LSVC, MIC.
 - Reduce Feature Elimination Feature ranking with recursive feature elimination and cross-validate the best selection of features.
 - Linear Support Vector Classifier Select features based on the weights of a LSVC.
 - Mutual Information Classifier- Estimate mutual information between two random variables and uses entropy estimation from K-nearest neighbor to select features.

150

100

red by	Darwin's	theory	of natural	1

Used six T1 classifiers trained on three randomly selected subset of features

RESULTS

Genetic Algorithm

problem using only 50 features or less

Number of Features Accuracies 5/

D Hierarchical Feature Selection

- were also found in the 4-class classification.

	SCI vs MCI1 vs MCI2 (3 classes)			MCI1 vs MCI2 vs AD (3 classes)			SCI vs MCI1 vs MCI3 vs AD (4 classes)		
Problem									
Feature Selection Method	Accuracy	Confidence Interval	Feature Used	Accuracy	Confidence Interval	Feature Used	Accuracy	Confidence Interval	Feature Used
Information Theory only	71.64%	$\pm 6.46\%$	125	75.97%	± 6.19%	50	64.05%	$\pm 4.92\%$	100
Information Theory refined by Wrapper	81.37%	± 5.41%	18	73.52%	± 6.36%	90	68.16%	± 3.01%	73

G Stacked Generalization (SG)

- feature selection algorithms.
- Using Stacked Generalization yielded 11% increase in

	Performance	Std. Deviation	95% Confidence
SG Score	80.55	6.51	6.53

Figure 5: Results from Stacked Generalization

CONCLUSION & FUTURE WORK

- **Conclusions**
- Feature # Description Angle of <u>3</u> on the Command Clock Height of Digit <u>6</u> on the Copy Clock 269 iait6NormHT A

SIGNAL PROCESSING AND **PATTERN RECOGNITION LABORATORY**

Genetic Algorithms achieve about 70% accuracy on the 4-class

• Improvements have been made to achieve larger search spaces in less time through parallelization

							•
	200 -		250 -		300 -		350 -
5	a) 	50	75	100	22	351	
%		69%		63%		57%	

Figure 3: Frequency of Active Genes and Performance of Number of Active Genes

For all test cases, the results were comparable to the previous results. However, improvements were found in the SCI vs MCI1 vs MCI2 classification, with an accuracy of 81% (increased 5%). Improvements vs the Information Theory Feature Selection

Figure 4: Information Theory Vs. Hierarchical result

Each T1 Classifiers used a subset of features based on different

The Meta Classifier run on 5 folds yielded the results in Fig .5.

performance than individual classifiers for the 4-class problem.

For all classification problems, results in the mid 70% - low 80% are easily attainable with a small network and 100 features selected.

Selected features varied between selection algorithms shown in *Fig 7*.