
– ECE 09.321: Systems and Controls –

Scratch Sumo-Bot: Tracking a Moving Object

Thai Nghiem, Russell Binaco
Section 3

May 7, 2018

1 Abstract

This project implemented a PID controller for a sumo robot object-follower. The sumo
robot was designed to meet the Rowan Prof Bots sumo robot competition, and was
implemented to have minimal overshoot, minimal steady-state error and a low settling
time. The sumo bot was designed and built from scratch at a cost lower than that
of the purchasable Zumo kit bots, and was implemented using an MSP430F5529
microprocessor. Ultimately, the sumo bot was able to follow a moving object at a
fixed distance and account for turning, always stopping directly facing the object. Two
identical PID controllers were used, one for each motor. The PID controllers used
constants Kp = 3, Ki = 1, and Kd = 1.

2 Introduction

The purpose of this project was to implement an object-following sumo robot. The
inspiration for this project came from the Annual Rowan Prof Bots competition, a sumo
robot competition held by the Rowan Chapter of IEEE. The Zumo kit bots that can be
purchased for this competition are driven by an Arduino, which was not permitted for
use in this project, so the sumo bot had to be built from scratch.

The object-following behavior of the robot was to be implemented using a PID
controller. Given a desired distance from an object, the sumo bot should detect its
current distance from the object, and move to the required distance, directly facing
the object. The turning capabilities of the bot are made possible by using two PID
controllers rather than one; one controller was used for each motor.

There are four main sections to this report. The Standards and Constraints section
addresses the standards that were followed when constructing the sumo bot, and the
constraints that affected the implementation of the object-follower system. The Control
Design section describes the characterization of the system and the design consider-
ations used in the Systems and Control aspect of the object follower, and provides a



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

block diagram of the PID system that was built. The Design Discussion section is a
complete description of the implementation of the sumo bot, including the hardware
and software components. The results and conclusions section describes the actual
performance of the object follower system, and includes the individual contributions
of the team members. An appendix is included for code listings. Also, videos of the
sumo bot and the complete code files will be attached with this report submission.

3 Standards And Constraints

Standards and constraints are regulations and limitations surrounding a project. Tak-
ing standards into consideration before designing the sumo bot plays an important
role in making the second-order design decisions and determining the success of the
system.

3.1 Standards

Since the secondary purpose of the project is to compete in the Annual Rowan Prof
Bots competition, the sumo bot strictly follows the rules of competition. According to
the rules, the design constraints of the bot are:

• The robot must have maximum dimensions of 10cm wide and 10cm long.

• The robot must have a mass no greater than 500g

• Robots must be self-impelled and self-controlled

All design choices must consider and fall within these parameters. The full competi-
tion’s rules can be found by clicking this website

3.2 Constraints

Many minor constraints have to be taken into considerations when building this sumo
bot object follower, such as the stability, price, motor speed, distance, and available
hardware. First of all, the system must not have a high percent overshoot, since
it might cause a collision with the target object when there is a sudden change in
position. Second of all, the total cost of the object follower must be relatively cheap
(under 100 US Dollars), as there was very little money that was capable of being
spent. Next, since the motor has a limited no-load speed of 400 RPM, the effect of
the PID controller must not be too high, as it could make the bot go too slow. Lastly, it
was a constraint to not use an Arduino processor in this project because it has a large
library that can make the task seem trivial to implement.

Scratch Sumo-Bot: Tracking a Moving Object 2

https://sumo.rowanieee.org/


Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

4 Control Design

The task of following a moving object is inherently a Systems and Control task that
requires feedback. The input to the system is a desired distance, so that distance
must be transformed into a form that the microprocessor can use to compute motor
speeds. In addition to system characterization, the PID controller should be tuned to
a desired overshoot and steady-state error, as well as responsiveness. The ability of
the system to reach a stable steady state should also be considered. This section of
the report discusses the desired behavior of the system from a systems and control
perspective, and section 6.1 discusses how the system behaved relative to these
design considerations.

4.1 Characterizing the System

The system is characterized by converting the distance between the robot and the
target object into a digital value using the analog-to-digital converter (ADC). First, the
output of the IR sensor (PRP220) was measured at varying distances from the sumo
bot. The results are seen in the table in Figure 1 below.

Figure 1: Characterization table.

The results show the successful detection of an object within 30cm, a distance
long enough to trail behind an object. The table is converted into a graph as seen in
Figure 2.

Scratch Sumo-Bot: Tracking a Moving Object 3



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Figure 2: Distance vs. ADC graph.

This line is then divided into 3 pieces to create a piece-wise function using equa-
tions (1) and (2) shown below. This is because an exponential decay graph is more
computationally intensive to characterize than a straight line, and a piecewise function
still provides a sufficient approximation of the characterized system. The implementa-
tion of the characterization code will be discussed later in Section 5.

m =
y2 − y1
x2 − x1

(1)

b = y1 − x1 ·m (2)

4.2 Design Goals

For a PID controller, design goals relate to the steady-state error, responsiveness
(i.e. settling time) and overshoot of the system. When following an object, little to
no overshoot is desired since overshoot could cause the sumo bot to collide with the
object, which may not be desired. Settling time and steady-state error should be
minimized. Ultimately, the goal is to reach the desired distance from the object as
quickly as possible, without overshooting that distance, and to minimize the oscillation
and error at that distance.

4.3 Stability

By characterizing the system via the ADC readings from the sumo bot itself, the sys-
tem is inherently stable. The only possible concern that could cause instability is a bad
environment: for example, direct sunlight contains infrared light, which would cause
the ADC readings to rise substantially and throwing off the characterization. Assum-
ing the sumo bot is used indoors, only bad ADC readings from stray IR light or noise
could cause a deviation in the system.

Scratch Sumo-Bot: Tracking a Moving Object 4



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

4.4 Control Loop Design

Figure 3 below shows the control loop for this system. Each portion of this loop was
implemented as follows: First, the transformation from a desired distance to its equiv-
alent ADC value was accomplished through the system characterization described
above. The error signal comes from the difference between the average of the 10
most recent ADC readings and this characterized value. The implementation of the
conversion from the error signal to a PWM duty cycle via the PID controller will be
discussed in section 5.2. This process ultimately changes the position of the sumo
bot, which is consistent with the initial set point also being a position.

Figure 3: Block Diagram of PID System.

5 Design Discussion

5.1 Hardware

The sumo-bot was designed from scratch, with the advantage of being low cost, easy
to adjust, and maintainable. The sumo-bot communicates with a MSP430F5529 using
the built-in ADC to read values from sensors and control two motors using an H-bridge.
Each of the mentioned hardware parts of the robot will be discussed in detail in the
following subsections.

5.1.1 Micro-controller

Choosing the right micro-controller was the first design choice to made, as it deter-
mines the efficiency of the system. The MSP430F5529 was decided on for various
reasons. First of all, the micro-controller fits within the 10cm x 10cm dimension con-
straint given by the Prof Bots competition. Also, the F5529 has 14 ADC channels
(12 external at the device’s pins and 2 internal), which is enough for full functionality
and communication with the sensors. The F5529 is also faster than most of the other
boards, including the MSP430G2553, when making decisions from sensor readings.
Finally, familiarity with the 5529 from previous projects and reusability of relevant code
also played a large part in the microprocessor decision.

Scratch Sumo-Bot: Tracking a Moving Object 5



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

5.1.2 PCB

Three versions of the PCB was designed for the sumo-robot, but only the second
version was used in the final product. In the last version, which can be seen from
Figure 4 of the PCB, there are 4 main sections.

Figure 4: Schematic of breakout board used to power components.

The first section is the break-out board for the MSP430 to be mounted on. The
second section is the H-bridge IC and the bulk and bypass capacitors that control the
behavior of the 2 motors. The third section, which is on the top, has the two voltage
regulators (5V and 3.3V). These are both used to supply power for the H-bridge and
the MSP430. Finally, the last section, which is right next to the voltage regulator, is
used for the IR sensors. In this section, the holes for the IR sensors are not connected
to the pins of the MSP430, as to allow changes when actually building the robot.

The layout of the PCB can be seen in Figure 5

Scratch Sumo-Bot: Tracking a Moving Object 6



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Figure 5: PCB Layout of the final product.

5.1.3 Housing

The next step was to design the chassis and board housing in Solidworks to be 3-D
printed. The chassiss design is based off of the Zumo 32U Prime kit sumo bot. The
adjustments made are to optimize the specific motors chosen and adding in additional
through-holes for the plow and board attachment. The models are shown below in
Figure 6.

Figure 6: 3D Model of the Housing

Scratch Sumo-Bot: Tracking a Moving Object 7



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

The next step was to take the 3-D design and import it to the Ultimaker Cura
Studio to be 3-D printed. The design took approximately 8 hours to print on print
speed setting of 0.1 and infill of 50%.

5.1.4 Sensors

There were many challenges when finally implementing the sensor design of the
scratch sumo bot. Initially, the infrared sensor (TSSP4056) needed a casing to be
more accurate. However, it did not fit as well into the mechanical design of the bot,
and the team was not satisfied with the performance of the TSSP4056. Upon further
research of the old sumo bots used as references, the PRP220 IR sensor was discov-
ered. The sensor was tested by the circuit as seen in Figure 7. This circuit was then
implemented in a ProtoBoard. The sensor was able to detect changes between black
and white as well as objects within 30cm very well.

Figure 7: Picture of breadboard test setup with IR sensors.

5.1.5 Control Diagram

A general overview of the functioning of the system can be seen in Figure 8. A 12V
energy source powers a 5V regulator, a 3.3V regulator, and the motors that are con-
nected to the H-Bridge. The 3.3V regulator powers the infrared LEDs, which reflect off
surfaces and into the nearby infrared sensors. The sensors send an analog voltage
back into the MSP430, which converts the reading into an analog signal and compares
it to thresholds that drive the logic of the H-bridge. Finally, the H-bridge controls the
motors of the sumobot. The code is explained more in detail in the design approach.

Scratch Sumo-Bot: Tracking a Moving Object 8



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Figure 8: Diagram of the sumo-bot as a whole.

5.2 Software

5.2.1 ADC12

The analog to digital (ADC) conversion plays an important role in the design of the
sumobot. The sensors output a voltage depending the distance of objects in front
of them. The ADC interrupt was toggled in a while loop so the microprocessor is
constantly checking the voltage readings from the sensors in order to make decisions
based on the inputs.
The code for the ADC conversion that is used in sensing the environment can be seen
below (with the ADC initialization omitted).

/∗
∗ Enable the ADC conver te r to s t a r t sensing the environment
∗ This f u n c t i o n i s c a l l e d i n main
∗ /

vo id sensing ( vo id )
{

ADC12CTL0 |= ADC12ENC; / / ADC12 enabled
ADC12CTL0 |= ADC12SC; / / S t a r t sampling / convers ion

b i s S R r e g i s t e r ( GIE ) ; / / LPM0, ADC12 ISR w i l l f o rce e x i t

}

5.2.2 Averager

Since the ADC values vary greatly between each sample and cause the system to
be behave in an unexpected way, we implemented an averager in the ADC interrupt.

Scratch Sumo-Bot: Tracking a Moving Object 9



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

This averager takes the average of 10 ADC values and updates the PID controller
according to this value. As a result, the system is much more stable and the robot
behaves as expected. The code for the averager can be seen below.

/ / For every 10 ADC samples , we use 1 f o r s t a b i l i t y o f the system
i f ( index < 10){ / / adds new value to ar ray f o r average of 10

buf3 [ index ] = ADC12MEM3; / / b u f f e r f o r r i g h t motor
buf4 [ index ] = ADC12MEM4;
index ++;

}
else { / / computes average of 10 and t ransm i t s value ; rese ts ar ray index

long average3 = 0;
long average4 = 0;
i n t i = 0 ;
f o r ( i = 0 ; i < 10 ; i ++){

average3 += buf3 [ i ] ;
average4 += buf4 [ i ] ;

}
average3 /= 10;
average4 /= 10;
index =0;
f l a g =1;
/ / −120 f o r F u l l vs Weak
adc3 = average3 ; / / changes duty cyc le
adc4 = average4 ; / / changes duty cyc le

/ / C a l l i n g the PID c o n t r o l l e r f u n c t i o n
updatePID ( ) ;

5.2.3 PWM - Motor Speed

Pulse width modulation is used to control the speed of each motor on the sumo-
bot. In order for this to be achieved, two PWM signals were output to Pin 1.4 and
Pin 2.4. Pin 1.4 controlled the speed of the right motor and Pin 2.4 controlled the
speed of the left motor. TA0CCR3 was used to control the right motor and TA2CCR1
was used to control the left motor. The PWM cycle is controlled using values 0-
999. Setting TA0CC3/TA0CCR0 = 0 will produce a duty cycle of 0% and setting
TA0CCR3/TA0CCR0 = 999 will produce a duty cycle of 100%.
The code to set the speed of motor using PWM can be seen below (with the PWM
initialization being omitted).

/∗
∗ This f u n c t i o n set the PWM value of the
∗ two motors , hence c o n t r o l t h e i r speed
∗ /

vo id setMotor ( i n t l e f t , i n t r i g h t )

Scratch Sumo-Bot: Tracking a Moving Object 10



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

{
i f ( r i g h t < 0) / / Backwards , c lock−wise
{

P2OUT |= BIT5 ; / / Sets d i r e c t i o n f o r H−br idge
TA0CCR3 = ( l e f t ∗ −1); / / Speed of the motor CCR/1000

}
else i f ( r i g h t == 0) / / s topp ing
{

TA0CCR3 = 0;
}
else / / Forwards , counter c lock−wise
{

P2OUT &= ˜ BIT5 ; / / Sets d i r e c t i o n f o r H−br idge
TA0CCR3 = l e f t ; / / Speed of the motor CCR/1000

}
. . . . .

[ same code i s done f o r the l e f t ]
}

5.2.4 Characterization

As previously discussed, the distance between the sumo-bot and the target object is
characterized into ADC values as to control the PWM of the 2 motors. This is done
by turning the graph in Figure 2 into 3 straight line graphs, as shown in Figure 9. The
first graph represents the ADC value versus a distance ranging from 0 to 7 cm. The
second graph represents the ADC value versus a distance ranging from 7 to 12 cm.
The last graph represents the ADC value versus a distance ranging from 12 to 30 cm.

Scratch Sumo-Bot: Tracking a Moving Object 11



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Figure 9: 3 straight line graphs derived from 1 curved line.

These graphs are then utilized to create 3 piecewise functions using Equations
(1) and (2). The 3 functions are implemented in the code as follows to give us the
equivalent ADC values.

/∗
∗ Charac te r i za t i on code f o r the system
∗ Convert the des i red d is tance to ADC value
∗ Using piece−wise f un c t i o n s
∗ /

vo id distToADC ( i n t d is tance ){
/ / 0cm to 7cm range
i f ( d is tance >= 0 && dis tance <= 7){

adc out = d is tance ∗−53.6 + 492.8 ;
/ / 7cm to 12cm range
} else i f ( d is tance > 7 && dis tance <= 12){

adc out = d is tance ∗−13.689 + 215.54;
/ / 12cm to 30cm range
} else i f ( d is tance > 12 && dis tance <= 30){

adc out = d is tance ∗−1.8716 + 74.838;
}
/ / De fau l t value
e lse {

adc out = 290;
}

}

Scratch Sumo-Bot: Tracking a Moving Object 12



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Hence, when the user inputs a desired distance of 5 cm away from the target object,
the above function will assign it into the first if-statement, and produce an equivalent
ADC value that will control the speed of the 2 motors.

5.2.5 PID Controller

The PID control was implemented using field variables (to maintain their value be-
tween function calls) and the updatePID function below. Within the function, the pro-
portional, integral and derivative terms are calculated and summed. Also, there are
two PID controllers, one for the left motor and one for the right motor. For the deriva-
tive term, the previous error and the current error are stored. The proportional term
is simply the error multiplied by the proportional constant, Kp. The derivative term is
the derivative constant, Kd, multiplied by the difference of the previous error and the
current error. Lastly, the integral term is a running sum of the error. To prevent integral
windup, this term is windowed between +/- 50. When summed, the derivative term is
negative.

/∗
∗ Pro po r t i on a l − I n t e g r a l − D e r i v a t i v e C o n t r o l l e r o f the robot
∗ I s c a l l e d i n the I n t e r r u p t
∗ /

vo id updatePID ( vo id ){
/ / Ca l cu l a t i ng the Er ro r term
error3Prev = e r ro r3 ; / / R ight motor
er ror4Prev = e r ro r4 ; / / L e f t motor
e r ro r3 = des i red − adc3 ;
e r ro r4 = des i red − adc4 ;

/ / Ca l cu l a t i ng the P ropo r t i ona l term
p r o p o r t i o n a l 3 = Kp ∗ er ro r3 ; / / R ight motor
p r o p o r t i o n a l 4 = Kp ∗ er ro r4 ; / / L e f t motor

/ / Ca l cu l a t i ng the D e r i v a t i v e term
d e r i v a t i v e 3 = Kd ∗ ( error3Prev−er ro r3 ) ; / / R ight motor
d e r i v a t i v e 4 = Kd ∗ ( error4Prev−er ro r4 ) ; / / Ledt motor

/ / Ca l cu l a t i ng the accumulator f o r the Er ro r term
accumulator3 = accumulator3 += e r ro r3 ;
accumulator4 = accumulator4 += e r ro r4 ;

/ / Capping accumulator values
i f ( accumulator3 >50){ / / R ight motor

accumulator3 = 50;
}else i f ( accumulator3<−50){

accumulator3 = −50;
}

Scratch Sumo-Bot: Tracking a Moving Object 13



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

i f ( accumulator4 >50){ / / L e f t motor
accumulator4 = 50;

}else i f ( accumulator4<−50){
accumulator4 = −50;

}

/ / Ca l cu l a t i ng the I n t e g r a l term
i n t e g r a l 3 = Ki ∗ accumulator3 ; / / R ight motor
i n t e g r a l 4 = Ki ∗ accumulator4 ; / / L e f t motor

/ / Adding the P ropo r t i ona l − I n t e g r a l − D e r i v a t i v e temrs
/ / up to create the PID c o n t r o l l e r
pid3 = p r o p o r t i o n a l 3 + i n t e g r a l 3−d e r i v a t i v e 3 ;
pid4 = p r o p o r t i o n a l 4 + i n t e g r a l 4−d e r i v a t i v e 4 ;

/ / conver t p id range to PWM range
setScaledMotor ( pid3 , pid4 ) ;

}

6 Results and Conclusions

6.1 System Behavior

This section describes the performance of the object-following system, first with only
a proportional term (Kd and Ki = 0) and then with a tuned PID controller, as well as
the performance at steady state. Figure 12 below shows the sumo bot with its target
object.

6.1.1 Proportional Control

For proportional control, the constant Kp was tuned to be 3. With proportional control
only, the sumo bot was able to successfully follow a moving object including turning,
but the performance of the system did not meet the design goals. While the bot
moved quickly towards the object from a long distance away as desired, there was
significant overshoot when the bot passed the desired distance from the object. Also,
the bot continued to oscillate in forwards and backwards motion significantly around
the desired distance. This was expected to occur, and the derivative and integral
terms were then added.

6.1.2 PID Control

With a proportional, integral and derivative term, the system characteristics improved
significantly. The sumo bot’s approach towards the object was initially fast, and slowed

Scratch Sumo-Bot: Tracking a Moving Object 14



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Figure 10: Sumo-bot and its object

as it got closer to the desired distance, but did not noticeably overshoot. As such, the
bot reached steady state almost as soon as it reached the desired distance, stopping
in front of the object. Overall, the system response (i.e. settling time) was slightly
slower, but the reduced overshoot and steady state error more than make up for this
in terms of the design goals.

6.1.3 Steady State and Errata

Occasionally, once the bot reached a stationary steady state, it would turn slightly
and then oscillate rotationally from facing directly forwards. This was attributed to a
bad sensor reading due to noise or incoming IR light. Noise reduction had already
been attempted via the averaging of the ADC values, but a better solution may be
a median filter rather than an averaging filter. This could be addressed as future
work. However, after a bad reading, the bot was able to correct itself as the rotational
oscillation decreased after the erroneous movement.

Also, an issue was encountered where the characterization of the system itself

Scratch Sumo-Bot: Tracking a Moving Object 15



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

was dependent on the strength left in the batteries that powered the sumo bot. Figure
11 shows the relationship between the system characterization using fresh batteries
and batteries that had been used in testing.

Figure 11: ADC value between low battery and full battery.

This relationship is nearly linear, which is useful since the system characterization
will only be off by a fixed offset rather than being completely erroneous. What this
means for the system is that the desired set point may not be accurately converted,
and the steady state distance will not be correct. Since there is no way for the code
itself to determine how much power is left in the batteries, this problem cannot be
resolved. The issue was speculated to be due to the H-bridge design and how power
is provided to the system. A solution would require a redesign of the hardware and a
rebuild of the sumo bot.

6.2 Conclusions

Ultimately, the sumo bot object following system was built successfully. The bot was
constructed from scratch, including 3D-printed parts and PCB designs, and met the
specifications and standards for the Rowan IEEE Prof Bots competition. The distance
of the sumo bot to an object was characterized into ADC values. Code for controlling
the motor speed of the bots was written, as well as a software implementation of a
PID controller. The system response met the design goals, and the cost of building the
sumo bot is less than the price of an Arduino-driven, pre-built bot. Figure 12 shows
the completed bot.

6.3 Contributions

The team always worked together throughout the process of making the sumo-bot
object follower. Almost all of the work on the project was done while meeting together,

Scratch Sumo-Bot: Tracking a Moving Object 16



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

Figure 12: Sumo-bot and its object.

and each member contributed equally. However, each member has his own specialty
and can be broken down into different categories seen in the following table.

Thai Nghiem Russell Binaco
Project Proposal PID Controller Research

Lead Hardware Designer Lead Software Designer
System Characterization Battery Sponsor

Acknowledgement: The authors would like to thank Dr. Al-Quzwini, Russell Traf-
ford and Simonas Bublis for giving us advice and support throughout the project.

Scratch Sumo-Bot: Tracking a Moving Object 17



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

7 Appendix A

1 # inc lude <msp430 . h>
2 / / f o r averaging ADC values
3 i n t adc3 = 0;
4 i n t adc4 = 0;
5 i n t buf3 [ 1 0 ] ;
6 i n t buf4 [ 1 0 ] ;
7 unsigned i n t index ;
8

9 i n t Kp=3;
10 i n t Kd=0;
11 i n t Ki =0;
12 i n t e r ro r3 = 0;
13 i n t e r ro r4 = 0;
14 i n t er ror3Prev = 0;
15 i n t er ror4Prev = 0;
16 i n t p r o p o r t i o n a l 3 = 0;
17 i n t p r o p o r t i o n a l 4 = 0;
18 i n t d e r i v a t i v e 3 = 0;
19 i n t d e r i v a t i v e 4 = 0;
20 i n t accumulator3 = 0;
21 i n t accumulator4 = 0;
22 i n t i n t e g r a l 3 = 0;
23 i n t i n t e g r a l 4 = 0;
24 i n t p id3 = 0;
25 i n t p id4 = 0;
26 i n t tempLeft = 0 ;
27 i n t tempRight = 0 ;
28 i n t adc out =0;
29 i n t sca le va lue = 8;
30

31 i n t c o n t r o l t y p e = 0;
32 i n t f l a g = 0;
33 i n t des i red = 0; / /ADC value
34 vo id PWMInit ( vo id ) ;
35 vo id sensing ( vo id ) ;
36 vo id s t a r t i n g ( vo id ) ;
37 vo id setMotor ( ) ;
38 vo id ADCInit ( vo id ) ;
39 vo id updatePID ( vo id ) ;
40 vo id distToADC ( i n t d is tance ) ;
41 vo id setScaledMotor ( i n t l e f t , i n t r i g h t ) ;
42 vo id p i n I n i t ( vo id ) ;
43

44

45 /∗ ∗
46 ∗ main . c
47 ∗ /
48 i n t main ( vo id )
49 {
50 / / Stop watchdog t imer
51 WDTCTL = WDTPW | WDTHOLD;
52

53 / / I n i t i a l i z a t i o n
54 p i n I n i t ( ) ;

Scratch Sumo-Bot: Tracking a Moving Object 18



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

55 PWMInit ( ) ;
56 ADCInit ( ) ;
57

58 / / Reset the speed of both motors
59 setMotor (0 ,0 ) ;
60

61 /∗
62 ∗ Compute des i red value i n ADC
63 ∗ Max : 200 ( c l oses t )
64 ∗ Min : 100 ( f u r t h e s t
65 ∗
66 ∗ des i red = 200;
67 ∗ /
68

69 / / Desired t r a i l i n g d is tance
70 i n t d is tance = 5; / / i n cent imeters
71 distToADC ( d is tance ) ; / / Distance to ADC value
72

73 / / Sumo−bot cons tan t l y sense the environment
74 whi le ( 1 ) / / i n i f i t e loop
75 {
76 sensing ( ) ;
77 }
78 }
79

80

81 vo id s t a r t i n g ( vo id )
82 {
83 sensing ( ) ;
84 }
85

86 /∗
87 ∗ Enable the ADC conver te r to s t a r t sensing the environment
88 ∗ This f u n c t i o n i s c a l l e d i n main
89 ∗ /
90 vo id sensing ( vo id )
91 {
92 ADC12CTL0 |= ADC12ENC; / / ADC12 enabled
93 ADC12CTL0 |= ADC12SC; / / S t a r t sampling / convers ion
94 b i s S R r e g i s t e r ( GIE ) ; / / LPM0, ADC12 ISR w i l l f o rce e x i t
95

96 }
97

98 /∗
99 ∗ Pro po r t i on a l − I n t e g r a l − D e r i v a t i v e C o n t r o l l e r o f the robot

100 ∗ I s c a l l e d i n the I n t e r r u p t
101 ∗ /
102 vo id updatePID ( vo id ) {
103 / / Ca l cu l a t i ng the Er ro r term
104 error3Prev = e r ro r3 ; / / R ight motor
105 error4Prev = e r ro r4 ; / / L e f t motor
106 er ro r3 = des i red − adc3 ;
107 er ro r4 = des i red − adc4 ;
108

109 / / Ca l cu l a t i ng the P ropo r t i ona l term
110 p r o p o r t i o n a l 3 = Kp ∗ er ro r3 ; / / R ight motor
111 p r o p o r t i o n a l 4 = Kp ∗ er ro r4 ; / / L e f t motor

Scratch Sumo-Bot: Tracking a Moving Object 19



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

112

113 / / Ca l cu l a t i ng the D e r i v a t i v e term
114 d e r i v a t i v e 3 = Kd ∗ ( error3Prev−er ro r3 ) ; / / R ight motor
115 d e r i v a t i v e 4 = Kd ∗ ( error4Prev−er ro r4 ) ; / / Ledt motor
116

117 / / Ca l cu l a t i ng the accumulator f o r the Er ro r term
118 accumulator3 = accumulator3 += e r ro r3 ;
119 accumulator4 = accumulator4 += e r ro r4 ;
120

121 / / Capping accumulator values
122 i f ( accumulator3 >50){ / / R ight motor
123 accumulator3 = 50;
124 }else i f ( accumulator3<−50){
125 accumulator3 = −50;
126 }
127

128 i f ( accumulator4 >50){ / / L e f t motor
129 accumulator4 = 50;
130 }else i f ( accumulator4<−50){
131 accumulator4 = −50;
132 }
133

134 / / Ca l cu l a t i ng the I n t e g r a l term
135 i n t e g r a l 3 = Ki ∗ accumulator3 ; / / R ight motor
136 i n t e g r a l 4 = Ki ∗ accumulator4 ; / / L e f t motor
137

138 / / Adding the P ropo r t i ona l − I n t e g r a l − D e r i v a t i v e temrs
139 / / up to create the PID c o n t r o l l e r
140 pid3 = p r o p o r t i o n a l 3 + i n t e g r a l 3−d e r i v a t i v e 3 ;
141 pid4 = p r o p o r t i o n a l 4 + i n t e g r a l 4−d e r i v a t i v e 4 ;
142

143 / / conver t p id range to PWM range
144 setScaledMotor ( pid3 , pid4 ) ;
145 }
146

147 /∗
148 ∗ This f u n c t i o n scale the PWM range , s ince the l e f t motor i s
149 ∗ s l i g h t l y s t ronger than the r i g h t motor , making the robot
150 ∗ s tee r r i g h t .
151 ∗ /
152 vo id setScaledMotor ( i n t l e f t , i n t r i g h t ) {
153 / / l e f t l i m i t −999 to 999
154 / / r i g h t l i m i t −870 to 870
155 / / expected range −200 to 200
156 tempLeft = ( l e f t ∗5/2 )∗ sca le va lue ;
157 tempRight = ( ( r i g h t ∗9) / 4 ) ∗ sca le va lue ;
158

159 / / 30 i s minimum value ( f u r t h e s t )
160 i f ( tempLeft < 30 && tempLeft > 0){
161 tempLeft = 30;
162 }
163 i f ( tempRight < 30 && tempRight > 0){
164 tempRight = 30;
165 }
166

167 i f ( tempLeft > −30 && tempLeft < 0){
168 tempLeft = −30;

Scratch Sumo-Bot: Tracking a Moving Object 20



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

169 }
170 i f ( tempRight > −30 && tempRight < 0){
171 tempRight = −30;
172 }
173 / / 999 i s maximum value ( c l oses t )
174 i f ( tempLeft< −999){
175 tempLeft = −999;
176 }
177 i f ( tempRight< −999){
178 tempRight = −999;
179 }
180

181 i f ( tempLeft >999){
182 tempLeft = 999;
183 }
184 i f ( tempRight>870){
185 tempRight = 870;
186 }
187 / / R ight L e f t
188 setMotor ( tempLeft , tempRight ) ;
189

190 }
191

192 /∗
193 ∗ This f u n c t i o n set the PWM value of the
194 ∗ two motors , hence c o n t r o l t h e i r speed
195 ∗ /
196 vo id setMotor ( i n t l e f t , i n t r i g h t )
197 {
198 i f ( r i g h t < 0) / / Backwards , c lock−wise
199 {
200 P2OUT |= BIT5 ; / / Sets d i r e c t i o n f o r H−br idge
201 TA0CCR3 = ( l e f t ∗ −1) ; / / Speed of the motor CCR/1000
202 }
203 else i f ( r i g h t == 0) / / s topp ing
204 {
205 TA0CCR3 = 0;
206 }
207 else / / Forwards , counter c lock−wise
208 {
209 P2OUT &= ˜ BIT5 ; / / Sets d i r e c t i o n f o r H−br idge
210 TA0CCR3 = l e f t ; / / Speed of the motor CCR/1000
211 }
212

213 i f ( l e f t < 0)
214 {
215 P1OUT |= BIT5 ;
216 TA2CCR1 = ( r i g h t ∗ −1) ;
217 }
218 else i f ( l e f t == 0)
219 {
220 TA2CCR1 = 0;
221 }
222 else / / forwards , c lock−wise
223 {
224 P1OUT &= ˜ BIT5 ;
225 TA2CCR1 = r i g h t ;

Scratch Sumo-Bot: Tracking a Moving Object 21



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

226 }
227 }
228

229 /∗
230 ∗ Charac te r i za t i on code f o r the system
231 ∗ Convert the des i red d is tance to ADC value
232 ∗ Using piece−wise f un c t i on s
233 ∗ /
234 vo id distToADC ( i n t d is tance ) {
235 / / 0cm to 7cm range
236 i f ( d is tance >= 0 && dis tance <= 7){
237 adc out = d is tance∗−53.6 + 492.8 ;
238 / / 7cm to 12cm range
239 } else i f ( d is tance > 7 && dis tance <= 12){
240 adc out = d is tance∗−13.689 + 215.54;
241 / / 12cm to 30cm range
242 } else i f ( d is tance > 12 && dis tance <= 30){
243 adc out = d is tance∗−1.8716 + 74.838;
244 }
245 / / De fau l t value
246 else{
247 adc out = 290;
248 }
249 }
250 vo id p i n I n i t ( vo id ) {
251 P2DIR |= BIT0 ; / / Pin 2.0 i n i t i a l i z a t i o n
252 P2OUT |= BIT0 ;
253

254 P2DIR |= BIT2 ; / / Pin 2.2 i n i t i a l i z a t i o n
255 P2OUT |= BIT2 ;
256

257 P2DIR |= BIT5 ;
258 P1DIR |= BIT5 ;
259

260 P1SEL =0; / / Se lec t GPIO opt ion
261 P1DIR |= BIT0 ; / / se t Por t 1.0 output −−−LED
262 P1OUT &= ˜ BIT0 ; / / LED OFF
263

264 P4SEL =0; / / Se lec t GPIO opt ion
265 P4DIR |= BIT7 ; / / se t Por t 4.7 output −−−LED
266 P4OUT &= ˜ BIT7 ; / / LED OFF
267

268 P1DIR &=˜( BIT1 ) ; / / se t Por t 1.1 i npu t −−− pushbutton
269 P1REN|= BIT1 ; / / enable p u l l−up / p u l l−down r e s i s t o r on
270 P1OUT|= BIT1 ; / / choose the p u l l−up r e s i s t o r
271

272 P1IE |= BIT1 ; / / enable the i n t e r r u p t on Por t 1.1
273 P1IES |= BIT1 ; / / se t as f a l l i n g edge
274 P1IFG &=˜( BIT1 ) ; / / c l ea r i n t e r r u p t f l a g
275 }
276 vo id PWMInit ( vo id )
277 {
278 P1DIR |= BIT4 ; / / I n i t i a l i z e PWM to output on P1.4
279 P1SEL |= BIT4 ;
280

281 P2DIR |= BIT4 ; / / I n i t i a l i z e PWM to output on P2.4
282 P2SEL |= BIT4 ;

Scratch Sumo-Bot: Tracking a Moving Object 22



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

283

284 TA0CCR0 =1000−1;
285 TA2CCR0 =1000−1;
286 TA0CCTL3 =OUTMOD 7;
287 TA0CCR3 =999;
288 TA2CCTL1 =OUTMOD 7;
289 TA2CCR1 = 999;
290 TA0CTL = TASSEL 2 + MC 1 + TACLR;
291 TA2CTL = TASSEL 2 + MC 1 + TACLR;
292 }
293

294 vo id ADCInit ( vo id )
295 {
296 ADC12CTL0 = ADC12ON+ADC12MSC+ADC12SHT02 ; / / Turn on ADC12, set sampling

t ime
297 ADC12CTL1 = ADC12SHP+ADC12CONSEQ 1; / / Use sampling t imer , s i n g l e

sequence
298 ADC12MCTL0 = ADC12INCH 0 ; / / r e f +=AVcc , channel = A0
299 ADC12MCTL1 = ADC12INCH 1 ; / / r e f +=AVcc , channel = A1
300 ADC12MCTL2 = ADC12INCH 2 ; / / r e f +=AVcc , channel = A2
301 ADC12MCTL3 = ADC12INCH 3 ;
302 ADC12MCTL4 = ADC12INCH 4 + ADC12EOS; / / r e f +=AVcc , channel = A3 ,

end seq .
303 ADC12IE = 0x10 ; / / Enable ADC12IFG.3
304 ADC12CTL0 |= ADC12ENC; / / Enable convers ions
305 /∗ Sets ADC Pin to NOT GPIO∗ /
306 P6SEL |= BIT1 + BIT2 + BIT3 + BIT4 ; / / P6.0 ADC

opt ion s e l e c t
307 P6DIR &= ˜ ( BIT1 + BIT2 + BIT3 + BIT4 ) ;
308 P6REN |= BIT1 + BIT2 + BIT3 + BIT4 ;
309 P6OUT &= ˜ ( BIT1 + BIT2 + BIT3 + BIT4 ) ;
310 ADC12CTL0 |= ADC12ENC;
311 ADC12CTL0 |= ADC12SC;
312 }
313

314 # i f def ined ( TI COMPILER VERSION ) | | def ined ( IAR SYSTEMS ICC )
315 #pragma vec to r = ADC12 VECTOR
316 i n t e r r u p t vo id ADC12 ISR ( vo id )
317 # e l i f def ined ( GNUC )
318 vo id a t t r i b u t e ( ( i n t e r r u p t (ADC12 VECTOR) ) ) ADC12 ISR ( vo id )
319 #else
320 # e r r o r Compiler not supported !
321 # end i f
322 {
323

324 swi tch ( even in range (ADC12IV ,34 ) )
325 {
326 case 0: break ; / / Vector 0 : No i n t e r r u p t
327 case 2: break ; / / Vector 2 : ADC over f low
328 case 4: break ; / / Vector 4 : ADC t im ing

over f low
329 case 6: break ; / / Vector 6 : ADC12IFG0
330 case 8: break ; / / Vector 8 : ADC12IFG1
331 case 10: break ; / / Vector 10: ADC12IFG2
332 case 12: break ; / / Vector 12: ADC12IFG3
333 case 14:
334 / / For every 10 ADC samples , we use 1 f o r s t a b i l i t y o f the system

Scratch Sumo-Bot: Tracking a Moving Object 23



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

335 i f ( index < 10){ / / adds new value to ar ray f o r average of 10
336 buf3 [ index ] = ADC12MEM3; / / b u f f e r f o r r i g h t motor
337 buf4 [ index ] = ADC12MEM4;
338 index ++;
339 }
340 else{ / / computes average of 10 and t ransm i t s value ; rese ts ar ray

index
341 long average3 = 0;
342 long average4 = 0;
343 i n t i = 0 ;
344 f o r ( i = 0 ; i < 10 ; i ++){
345 average3 += buf3 [ i ] ;
346 average4 += buf4 [ i ] ;
347 }
348 average3 /= 10;
349 average4 /= 10;
350 index =0;
351 f l a g =1;
352 / / −120 f o r F u l l vs Weak
353 adc3 = average3 ; / / changes duty cyc le
354 adc4 = average4 ; / / changes duty cyc le
355

356 / / C a l l i n g the PID c o n t r o l l e r f u n c t i o n
357 updatePID ( ) ;
358 }
359

360 b i c S R r e g i s t e r o n e x i t ( LPM0 bits ) ;
361 break ; / / Vector 14: ADC12IFG4
362 case 16: break ; / / Vector 16: ADC12IFG5
363 case 18: break ; / / Vector 18: ADC12IFG6
364 case 20: break ; / / Vector 20: ADC12IFG7
365 case 22: break ; / / Vector 22: ADC12IFG8
366 case 24: break ; / / Vector 24: ADC12IFG9
367 case 26: break ; / / Vector 26: ADC12IFG10
368 case 28: break ; / / Vector 28: ADC12IFG11
369 case 30: break ; / / Vector 30: ADC12IFG12
370 case 32: break ; / / Vector 32: ADC12IFG13
371 case 34: break ; / / Vector 34: ADC12IFG14
372 d e f a u l t : break ;
373 }
374 }
375

376 /∗
377 ∗ Button I n t e r r u p t t h a t c o n t r o l the C o n t r o l l e r Type of the robot
378 ∗ There are 4 modes i n t o t a l : on ly Propor t i ona l , P ropor t i ona l−I n t e g r a l ,
379 ∗ Propor t i ona l−Der i va t i ve , and a l l P ropor t i ona l−I n t e g r a l−D e r i v a t i v e
380 ∗ /
381 #pragma vec to r=PORT1 VECTOR
382 i n t e r r u p t vo id PORT 1( vo id )
383 {
384 P1IE &= ˜ BIT1 ; / / Disable i n t e r r u p t
385

386 / / Debounce 1
387 d e l a y c y c l e s ( 1 ) ;
388

389 / / Debounce 2
390 TA1CTL = TASSEL 1 + MC 1 + ID 1 ; / / Set up Timer A, Count up , d i v i d e r 2

Scratch Sumo-Bot: Tracking a Moving Object 24



Thai Nghiem, Russell Binaco – ECE 09.321: Systems and Controls – Section 3

391 TA1CCTL0 = 0x10 ; / / Set up compare mode f o r CCTL
392 TA1CCR0 = 2000; / / Durat ion a t which the i n t e r r u p t i s d i sab le
393 / / Durat ion 2000/16kHz = 1/8 sec .
394 P1IFG &=˜( BIT1 ) ; / / Clear f l a g
395

396 / / Loop back to c o n t r o l type 0
397 i f ( c o n t r o l t y p e > 3){
398 c o n t r o l t y p e = 0;
399 }
400

401 swi tch ( c o n t r o l t y p e ) {
402 case 0: / / Only PI
403 P4OUT |= BIT7 ; / / Turn 4.7 on f o r 01
404 P1OUT &= ˜ BIT0 ; / / Turn 1.0 on
405 Ki =1;
406 sca le va lue = 5;
407 break ;
408 case 1: / / PD
409 P1OUT |= BIT0 ; / / Turn 1.0 on f o r 10
410 P4OUT &= ˜ BIT7 ; / / Turn 4.7 o f f
411 Ki = 0 ;
412 Kd = 1;
413 sca le va lue = 8;
414 break ;
415 case 2: / / PID
416 P4OUT |= BIT7 ; / / Turn 4.7 on f o r 11
417 P1OUT |= BIT0 ; / / Turn 1.0 on f o r
418 Ki = 1 ;
419 Kd = 1;
420 sca le va lue = 1;
421 break ;
422 case 3: / / Only P
423 P4OUT &= ˜ BIT7 ; / / Turn 4.7 on f o r 11
424 P1OUT &= ˜ BIT0 ; / / Turn 1.0 on f o r
425 Ki = 0 ;
426 Kd = 0;
427 sca le va lue = 8;
428 break ;
429 d e f a u l t :
430 break ;
431 }
432 c o n t r o l t y p e += 1;
433

434

435 }
436 #pragma vec to r=TIMER1 A0 VECTOR
437 i n t e r r u p t vo id Timer A0 ( vo id )
438 {
439 P1IE |= BIT1 ; / / Enable i n t e r r u p t again .
440 }

Scratch Sumo-Bot: Tracking a Moving Object 25


	Abstract
	Introduction
	Standards And Constraints
	Standards
	Constraints

	Control Design
	Characterizing the System
	Design Goals
	Stability
	Control Loop Design

	Design Discussion
	Hardware
	Micro-controller
	PCB
	Housing
	Sensors
	Control Diagram

	Software
	ADC12
	Averager
	PWM - Motor Speed
	Characterization
	PID Controller


	Results and Conclusions
	System Behavior
	Proportional Control
	PID Control
	Steady State and Errata

	Conclusions
	Contributions

	Appendix A

